$\lim_{x \to 0} \frac{\sin x}{1 - \cos x}$

In this problem attempt to evaluate:

$$\lim_{x \to 0} \frac{\sin x}{1 - \cos x}$$

using approximation.

- a) Substitute linear approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?
- b) Substitute quadratic approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?

$$\lim_{x \to 0} \frac{\sin x}{1 - \cos x}$$
 22/6/25

a)
$$\cos x \approx 1$$
, $\sin x \approx x$
 $\Rightarrow \lim_{x \to 0} \frac{x}{1-1} = \lim_{x \to 0} \frac{x}{0}$
 \therefore It is hard to say what happens as $x \to 0$.

b)
$$\sin \chi \propto \sin(0) + \cos(0)\chi - \frac{\sin(0)\chi}{2} = 1 - 0 - \frac{1}{2}\chi^2 = 1 - \frac{1}{2}\chi^2$$

 $\cos \chi \propto \cos(0) - \sin(0)\chi - \frac{\cos(0)\chi^2}{2} = 1 - 0 - \frac{1}{2}\chi^2 = 1 - \frac{1}{2}\chi^2$
 $=) \lim_{\chi \to 0} \frac{\chi}{1 - 1 + \frac{1}{2}\chi^2} = \lim_{\chi \to 0} \frac{2\chi}{\chi^2} = \infty$
 $\chi \to 0$ The denominator approaches 0 faster than the infinity numerator and hence the expression goes to infinity as $\chi \to 0$.